
MySQL+HandlerSocket=NoSQL

Why you need NoSQL

Alternatives

Meet HS

HS-MySQL interoperability

HS internal working

Using HS

Configuration hints

Use cases @ Badoo

Tuning

Further reading

Interface

Protocol

Commands

Peculiarities

Why you need NoSQL

SQL benefits

Aggregate functions

subqueries

JOINs

Complicated WHERE conditions

Transactions

...

But for a website most of your queries
are simple

Like this one: SELECT `user` FROM
`users` WHERE `id` = 1

So, you use memcached to save MySQl
from 1000 RPS

What about another way If I tell you there's a way to use MySQL
and run 1000s of RPS for simple queries

MySQL HANDLER statement

Alternatives

Okay, but I've heard MySQL already provides
NoSQL access

Yes, this is NoSQL-via-SQL query

handler `try1` open as h;
handler h read `PRIMARY` >= (1) where `value` LIKE 'v
%' AND `key` RLIKE 'k' LIMIT 3;
handler h read `PRIMARY` first where `value` LIKE 'v
%';
handler h CLOSE;

Cons

Read-only!

You get all fields

Pros

where_condition can be full-featured MySQL
expression, except subqueries or JOINS

No special client library needed

where_condition can be applied to any fields

You can fetch multiple rows per query

Not consistent

Not really fast

Mysql innodb memcahed plugin

http://dev.mysql.com/doc/refman/5.6/en/innodb-
memcached.html

NDBAPI

http://dev.mysql.com/doc/refman/5.0/en/handler.html

Cons

Pros

early beta

a little bit complicated to deploy

works only on single row - not sure

preview is currently N/A for download

can retrieve/store multiple columns of your choice

Returns one row

Very limited filtering abilities. No result sub-filtering, no
>, <, <=, >=, != selectors

You can use memcached itself

Cons

Separate MySQL product with lots of peculiarities,
complicated

NDBstorage engine only

Complicated API with a limited subset of languages
supported officially

http://dev.mysql.com/doc/ndbapi/en/overview-ndb-
api.html

Faster in MariaDB

SELECT * FROM family WHERE id = 1;

MySQL
HANDLER family OPEN;
HANDLER family READ `PRIMARY` = (id)
WHERE id = 1;
HANDLER family CLOSE;

With MariaDB 5.3
HANDLER family OPEN;
PREPARE stmt FROM 'HANDLER family
READ `PRIMARY` = (id) WHERE id = ?'; set
@id=1;
EXECUTE stmt USING @id;
DEALLOCATE PREPARE stmt;
HANDLER family CLOSE;

Even better with persistent connections!

What HS is not

Meet HS

Withstands 10000+ simultaneous connections

Allows you to work with the same table via SQL
simultaneously

No second cache -> no data inconsistency

What HS is

MySQL plug-in with direct access to InnoDB/XtraDB

It works as a daemon inside
the mysqld process, accepting TCP connections, and
executing requests from
clients.

HandlerSocket does not support SQL queries. Instead,
it has its own simple protocol for CRUD operations on
tables.

Pros

To lower CPU usage it does not parse SQL.

It batch-processes requests where possible, which
further reduces CPU usage and lowers disk usage.

The client/server protocol is very compact compared
to mysql/libmysql, which reduces network usage.

No duplicate cache (throw out memcached)

Cons

Originally InnoDB only, but works with some other
storage engines

Handlersocket history

Was originally intended for fast PK lookups

Community contribution by DeNa corp, Japan. Written
by Akira Higuchi

http://www.dena.jp/en/index.html

Later was loved by the community, gained extra
functionality

Also simple protocol means easy debugging, you can
try it yourself with telnet

Can be used with MySQL replication

Bundled with Percona Server

No transactions/stored procedures

Some data types are not fully supported

Charsets/collations/timezones functionality is very
limited

Buggy in lesser used functionality

You'll work with hard disk then, HS will make no senseNot intended for working with datasets which don't fit
in RAM

Poor support

limited authentication, MySQL users are not supported

Not supported by Oracle.

Not for hosting/shared usage

unpredictable time of bugfixes (22 open bug reports for
example). My favorite ‘off by one error in IN() requests’
is still not fixed.

Unmature

Not a tool for creating/modifying tables

loose documentation — learn by trial and error (this
talk will cover 99% you will need)

Update/insert commands behavior was once changed
dramatically, drawing broken inserts/updates

you can't even get handlersocket plugin's version
through handler socket interface

Protocol was not designed for persistent connections,
need some tricks

Sometimes holds tables open in some cases,
preventing table structure modifications

You will possibly want to write your own client library
with persistent connections after this talk

Not an interface for HANDLER MySQL statement

Lots of client libraries on the net

Not a key-value/document store This is rather an interface for reading/writing relational
data

Not a ‘binary SQL’

No subqueries, no JOINs, no aggregate functionsNot a tool for complex queries

operations you can make are limited

HandlerSocket requests are deadlock-free

Modifications are durable

Only one writer thread can be executed at the same
time

Image 3 (write cycle)

Reader threads don’t block with InnoDB
Image 2 read cycle

closes tables when traffics become small etc so that it
won't block administrative commands (DDL) forever.

 To access MySQL tables, of course HandlerSocket
needs to open/close
tables (very costly). But HandlerSocket does not
open/close tables every time. It
keeps tables opened for reuse.

NoSQL network
server inside MySQL. which listens on specific ports,
accepting NoSQL
protocols/APIs, then accessing to InnoDB directly by
using MySQL internal storage engine APIs. This
approach is similar to NDBAPI, but it can talk with
InnoDB.

Image 1 (web server)

HS internal working

HS-MySQL interoperability

HS can be used with MySQL replication (using
bin log with row-based format)

auto_increment is supported

You read consistent data via HS and via SQL

LOCK TABLES … READ will not

LOCK TABLES … WRITE will also fail

Never ever try to do DDL statements on a table you
worked with via HS, even if you've closed all the
sockets

Table opening/closing logic is complicated

It's a plugin, so this should work

install plugin handlersocket soname
'handlersocket.so';
uninstall plugin handlersocket;

but don't do it! Usually hangs DB.

MySQL users, permissions are not supported

Current builds invalidate query_cache

Interface

You get 2 ports open — 9998, 9999

9998 — will not allow you to modify data

Workflow:

Client initiates connection. (здесь сделать пример)

Client sends request.

Client receives response.

Client sends next request.

...

For one request you get one response.

You can send N requests in bulk, you will receive
N responses in the order of requests.

Peculiarities

Will ‘ON UPDATE CURRENT_TIMESTAMP’ work?

Always provide data for all selected columns bug

Supported fields

You can read all data types

You can't write TIMESTAMP fields

While writing overflowing data is cut the same way as
via SQL

Charsets

[TYPE] Written via SQL Read through SQL Read
through NoSQL

[TYPE] Written via HS => Read via SQL

if you work with UTF8 only — don't worry at all. Just
comply to HS protocol encoding standard.

BLOBS are binary — you read what you write w/o any
charset applied

Table charset cp1251
written by HS in cp1251, read via SQL (connection
charset utf8)

Example 1 (We write in same charset)

Example 2 (fields with different charsets)

CREATE TABLE `hscdemo3` (`pk` bigint(20) unsigned
NOT NULL AUTO_INCREMENT,
 `char` char(10) CHARACTER SET cp1251 NOT NULL
DEFAULT '', <-- cp1251
 `varchar` varchar(10) NOT NULL, <-- utf8
 PRIMARY KEY (`pk`),
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

P 89 test hscdemo3 PRIMARY
pk,char,varchar
0 1
89 + 3 1 {'абвгд' in cp1251} {абвгд
in utf8}
0 1

So these collations affect >,>=,<,<= operations (but
not filters) and define the order you get results in

SQL reads fields in the charset of connection

When you use <, <= operations, you'll get records in
reverse order

SQL select (connection charset utf8)

HS writes fields in the charset of the field

Index is ordered according to the collations of the
fields it consists of

The only place collations are meaningful for HS is the
order it reads records from the index you opened

‘ON UPDATE CURRENT_TIMESTAMP’ is not working

Example 3 (insert wrong chars)

Example:

CREATE TABLE `hscdemo3` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `char` char(10) CHARACTER SET ascii NOT NULL
DEFAULT '', <-- ascii
 `varchar` varchar(10) NOT NULL, <-- utf8
 PRIMARY KEY (`pk`),
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT
CHARSET=utf8;

P 89 test hscdemo3 PRIMARY
pk,char,varchar0 1
89 = 1 1
0 3 1 {'абвгд' in cp1251} {абвгд in
utf8}

[TYPE] Written via HS, read via SQL
[CHAR(10), ascii] 0xe0e1e2e3e4 => 0x3f3f3f3f3f <- 5x
‘?’ ascii chars
[VARCHAR(10), utf8] 0xd0b0d0b1d0b2d0b3d0b4 =>
0xd0b0d0b1d0b2d0b3d0b4 <-- “абвгд” in utf8

{screenshot}

if you try to insert out-of-charset bytes via HS, you
get ‘?’ ascii chars

Example:

Always provide data for all columns you specified with
{columns list} param in open_index request

otherwise you'll insert garbled data

Exception: non-empty constant default value was set
for the column

Default values

Read via HS

Use only for columns not specified in open_index!

Insert via HS in charsets of the fileds

Example 1: No default values provided, NOT NULL

P 89 test hscdemo3 PRIMARY
pk,char,varchar
0 1
89 = 1 1
0 3 1 {'абвгд' in cp1251} {абвгд in
utf8}

CREATE TABLE `hswdemo4` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `int` int(11) NOT NULL,
 `smallint` smallint(6) NOT NULL,
 `tinyint` tinyint(4) NOT NULL,
 `mediumint` mediumint(9) NOT NULL,
 `bigint` bigint(20) NOT NULL,
 `bit` bit(2) NOT NULL,
 `decimal` decimal(4,4) NOT NULL,
 `float` float NOT NULL,
 `double` double NOT NULL,
 `date` date NOT NULL,
 `datetime` datetime NOT NULL,
 `timestamp` timestamp NOT NULL,
 `time` time NOT NULL,
 `year` year(4) NOT NULL,
 `char` char(10) NOT NULL,
 `varchar` varchar(10) NOT NULL,
 `binary` binary(10) NOT NULL,
 `varbinary` varbinary(10) NOT NULL,
 `tinyblob` tinyblob NOT NULL,
 `mediumblob` mediumblob NOT NULL,
 `blob` blob NOT NULL,
 `longblob` longblob NOT NULL,
 `tinytext` tinytext NOT NULL,
 `mediumtext` mediumtext NOT NULL,
 `text` text NOT NULL,
 `longtext` longtext NOT NULL,
 `enum` enum('small','medium','large','xlarge') NOT
NULL,
 `set` set('one','two','three') NOT NULL,
 PRIMARY KEY (`pk`)
) ENGINE=InnoDB;

HS reads fields in the charset of the field

{screenshot}

`timestamp` automatically gets 'DEFAULT
CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP'.

Insert via HS: wrong chars, right chars

Insert via SQL, read via SQL:

1 0 0 0 0 0 00 0.0000 0
0 0000-00-00 0000-00-00 00:00:00
2012-11-26 11:57:51 00:00:00
0000

Insert via HS, read via SQL:

2 0 0 0 0 0 00 0.0000 0
0 0000-00-00 0000-00-00 00:00:00
0000-00-00 00:00:00 00:00:00
0000
small

Via HS enum doesn't work as expected, gets first
possible value. Field with ‘timestamp’ data type get
‘0000-00-00 00:00:00’ instead of
CURRENT_TIMESTAMP.

Example 2: Constant default values provided

CREATE TABLE `hsidemo2` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `int` int(11) NOT NULL DEFAULT '1',
 `smallint` smallint(6) NOT NULL DEFAULT '2',
 `tinyint` tinyint(4) NOT NULL DEFAULT '3',
 `mediumint` mediumint(9) NOT NULL DEFAULT '4',
 `bigint` bigint(20) NOT NULL DEFAULT '5',
 `bit` bit(2) NOT NULL DEFAULT b'1',
 `decimal` decimal(4,4) NOT NULL DEFAULT '0.1235',
 `float` float NOT NULL DEFAULT '12.345',
 `double` double NOT NULL DEFAULT '123.45',
 `date` date NOT NULL DEFAULT '2012-10-01',
 `datetime` datetime NOT NULL DEFAULT '2012-10-01
01:02:03',
 `timestamp` timestamp NOT NULL DEFAULT
'2012-10-01 01:02:03',
 `time` time NOT NULL DEFAULT '01:02:03',
 `year` year(4) NOT NULL DEFAULT '2012',
 `char` char(10) COLLATE utf8_unicode_ci NOT NULL
DEFAULT 'abc',
 `varchar` varchar(10) COLLATE utf8_unicode_ci NOT
NULL DEFAULT 'abc',
 `binary` binary(10) NOT NULL DEFAULT 'abc',
 `varbinary` varbinary(10) NOT NULL DEFAULT 'abc',
 `enum` enum('small','medium','large','xlarge')
COLLATE utf8_unicode_ci NOT NULL DEFAULT 'large',
 `set` set('one','two','three') COLLATE utf8_unicode_ci
NOT NULL DEFAULT 'two',
 PRIMARY KEY (`pk`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
COLLATE=utf8_unicode_ci;

Note: BLOB and TEXT types can't have default
values!

Sorting (collations)

Use http://www.collation-charts.org/mysql60/

Insert via SQL, read via SQL:

CREATE TABLE `hsmdemo3` (`id` int(11) unsigned
NOT NULL AUTO_INCREMENT,
 `letter` char(1) NOT NULL DEFAULT '',
 `alp` char(2) NOT NULL DEFAULT '',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Collation = utf8_general_ci.

1 1 2 3 4 5 01 0.1235
12.345 123.45 2012-10-01 2012-10-01
01:02:03 2012-10-01 01:02:03 01:02:03
2012 abc abc abc\0\0\0\ abc
large two

insert into hsmdemo3(`letter`, `alp`) VALUES ('y','en'),
('W','en'), ('z','en'), ('b','en'), ('C','en'), ('a','en'),
('V','en'), ('X','en'), ('П','ru'), ('а','ru'), ('ю','ru'), ('Г','ru'),
('я','ru'), ('б','ru'), ('Д','ru'), ('Ф','ru');

Insert via HS, read via SQL:

Example 3: Default value = NULL

2 1 2 3 4 5 01 0.1235
12.345 123.45 2012-10-01 2012-10-01
01:02:03 2012-10-01 01:02:03 01:02:03
2012 abc abc abc abc large two

select * from hsmdemo3 order by letter;

With constant default values provided everything
works, except `binary` datatype, it will trim ending \0s
from the default value. Don't use binary datatype.

Screenshot

What about NULL default values?

Example 1: Going down the index

CREATE TABLE `hsidemo5` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `int` int(11) DEFAULT NULL,
 `smallint` smallint(6) DEFAULT NULL,
 `tinyint` tinyint(4) DEFAULT NULL,
 `mediumint` mediumint(9) DEFAULT NULL,
 `bigint` bigint(20) DEFAULT NULL,
 `bit` bit(2) DEFAULT NULL,
 `decimal` decimal(4,4) DEFAULT NULL,
 `float` float DEFAULT NULL,
 `double` double DEFAULT NULL,
 `date` date DEFAULT NULL,
 `datetime` datetime DEFAULT NULL,
 `timestamp` timestamp NULL DEFAULT NULL,
 `time` time DEFAULT NULL,
 `year` year(4) DEFAULT NULL,
 `char` char(10) COLLATE utf8_unicode_ci DEFAULT
NULL,
 `varchar` varchar(10) COLLATE utf8_unicode_ci
DEFAULT NULL,
 `binary` binary(10) DEFAULT NULL,
 `varbinary` varbinary(10) DEFAULT NULL,
 `enum` enum('small','medium','large','xlarge')
COLLATE utf8_unicode_ci DEFAULT NULL,
 `set` set('one','two','three') COLLATE utf8_unicode_ci
DEFAULT NULL,
 PRIMARY KEY (`pk`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
COLLATE=utf8_unicode_ci;

Insert via SQL, read via SQL:

1 (NULL) (NULL) (NULL) (NULL)
(NULL) (NULL) (NULL) (NULL)
(NULL) (NULL) (NULL) (NULL)
(NULL) (NULL) (NULL) (NULL)
(NULL) (NULL) (NULL) (NULL)

Trying 10.10.145.16...
Connected to dbh15.mlan.
Escape character is '^]'.
P 89 test hsmdemo3 letter id,letter,alp
0 1
89 >= 1 a 100 0
0 3 38 a en 36 b en 37 C
en 39 V en 34 W en 40 X
en 33 y en 35 z en 42 а
ru 46 ru 44 Г ru 47 Д ru
41 П ru 48 Ф ru 43 ю ru
45 я ru

Insert via HS, read via SQL:

38 a en
36 b en
37 C en
39 V en
34 W en
40 X en
33 y en
35 z en
42 а ru
46 б ru
44 Г ru
47 Д ru
41 П ru
48 Ф ru
43 ю ru
45 я ru

2 0 0 0 0 0 00 0.0000 0
0 0000-00-00 0000-00-00 00:00:00
0000-00-00 00:00:00 00:00:00
0000

Example 2: Going up the index

NULL as a default value won't work. You'll get zeroed
or empty values instead.

89 <= 1 я 100 0
0 3 45 я ru 43 ю ru 48 Ф
ru 41 П ru 47 Д ru 44 Г ru
46 б ru 42 а ru 35 z en
33 en 40 X en 34 W en 39
V en 37 C en 36 b en 38
a en

45 я ru
43 ю ru
48 Ф ru
41 П ru
47 Д ru
44 Г ru
46 б ru
42 а ru
35 z en
33 у en
40 X en
34 W en
39 V en
37 C en
36 b en
38 a en

Example 3: Going down the index (utf8_bin)

Okay, now we convert the same table to collate with
utf8_bin

select * from hsmdemo3 order by letter;

{screenshot}

89 >= 1 0 100 0
0 3 37 C en 39 V en 34 W
en 40 X en 38 a en 36 b
en 33 y en 35 z en 44 Г
ru 47 ru 41 П ru 48 Ф ru
42 а ru 46 б ru 43 ю ru
45 я ru

37 C en
39 V en
34 W en
40 X en
38 a en
36 b en
33 y en
35 z en
44 Г ru
47 Д ru
41 П ru
48 Ф ru
42 а ru
46 б ru
43 ю ru
45 я ru

Example 4: Let's try combined index

P 89 test hsmdemo7 letters id,a,b
0 1
89 > 2 0 0 30 0
0 3 195 C a 112 C b 6 C
C 205 C V 235 C W 27 C
X 221 C y 228 C z 213 C
а 119 250 C Г 109 C Д 72
C П 44 C Ф 16 C ю 202 C
я 182 V a 32 V b 145 V C
114 V V 153 V W 144 V X
19 V y 190 V z 84 V а
146 V б 214 V Г 97 V Д
115 V П 40 V Ф

CREATE TABLE `hsmdemo6` (`id` int(11) unsigned
NOT NULL AUTO_INCREMENT,
 `a` char(1) CHARACTER SET utf8 COLLATE utf8_bin
NOT NULL DEFAULT '',
 `b` char(1) NOT NULL DEFAULT '', <-- this one gets
utf8_general_ci collation
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=512 DEFAULT
CHARSET=utf8;

Fill it in with all possible combinations of the above
letters randomly ordered:

Select 30 rows from the beginning of index

195 C a
112 C b
6 C C
205 C V
235 C W
27 C X
221 C y
228 C z
213 C а
119 C б
250 C Г
109 C Д
72 C П
44 C Ф
16 C ю
202 C я
182 V a
32 V b
145 V C
114 V V
153 V W
144 V X
19 V y
190 V z
84 V а
146 V б
214 V Г
97 V Д
115 V П
40 V Ф

select * from hsmdemo7 order by a,b; {screenshot}

CREATE TABLE `hsidemo6` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `timestamp` timestamp NULL DEFAULT
CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 PRIMARY KEY (`pk`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
COLLATE=utf8_unicode_ci;

{screenshot}

P 89 test hsidemo6 PRIMARY pk0 1
89 = 1 1 1 0 U 2
0 1 1

{screenshot}

Complete fail!

[INT] -2147483648 => -2147483648 vs. -2147483648
[SMALLINT] -32768 => -32768 vs. -32768
[TINYINT] -128 => -128 vs. -128
[MEDIUMINT] -8388608 => -8388608 vs. -8388608
[BIGINT(20)] -9223372036854775807 =>
-9223372036854775807 vs. -9223372036854775807
[BIT(2)] 2 => 0x02 vs. 0x02
[DECIMAL(4,4)] 0.1527 => 0.1527 vs. 0.1527
[FLOAT] 10203.10203 => 10203.1 vs. 10203.1
[DOUBLE] 102030.102030 => 102030.10203 vs.
102030.10203
[DATE] 1000-01-01 => 1000-01-01 vs. 1000-01-01
[DATETIME] 1000-01-01 00:00:00 => 1000-01-01
00:00:00 vs. 1000-01-01 00:00:00
[TIMESTAMP] 1970-01-01 00:00:01 => 1970-01-01
00:00:01 vs. 1970-01-01 00:00:01
[TIME] -838:59:59 => -838:59:59 vs. -838:59:59
[YEAR(4)] 2004 => 2004 vs. 2004
[CHAR(10)] abcdef => abcdef vs. abcdef
[VARCHAR(10)] abcdef => abcdef vs. abcdef
[BINARY(10)] abcdef => abcdef vs. abcdef
[VARBINARY(10)] abcdef => abcdef vs. abcdef
[TINYBLOB] abcdef => abcdef vs. abcdef
[MEDIUMBLOB] abcdef => abcdef vs. abcdef
[BLOB] abcdef => abcdef vs. abcdef
[LONGBLOB] abcdef => abcdef vs. abcdef
[TINYTEXT] abcdef => abcdef vs. abcdef
[MEDIUMTEXT] abcdef => abcdef vs. abcdef
[TEXT] abcdef => abcdef vs. abcdef
[LONGTEXT] abcdef => abcdef vs. abcdef
[ENUM('small', 'medium', 'large', 'xlarge')] large => large
vs. large
[SET('one', 'two', 'three')] one,two => one,two vs.
one,two

[INT] -2147483648 => -2147483648
[SMALLINT] -32768 => -32768
[TINYINT] -128 => -128
[MEDIUMINT] -8388608 => -8388608
[BIGINT(20)] -9223372036854775807 =>
-9223372036854775807
[BIT(2)] => 0x02
[DECIMAL(4,4)] 0.1527 => 0.1527
[FLOAT] 10203.10203 => 10203.1 !!! — cut, this is
okay
[DOUBLE] 102030.102030 => 102030.10203
[DATE] 1000-01-01 => 1000-01-01
[DATETIME] 1000-01-01 00:00:00 => 1000-01-01
00:00:00
[TIMESTAMP] 1970-01-01 00:00:01 => 0000-00-00
00:00:00 !!! — not supported
[TIME] -838:59:59 => -838:59:59
[YEAR(4)] 2004 => 2004
[CHAR(10)] abcdef => abcdef
[VARCHAR(10)] abcdef => abcdef
[BINARY(10)] abcdef => abcdef
[VARBINARY(10)] abcdef => abcdef
[TINYBLOB] abcdef => abcdef
[MEDIUMBLOB] abcdef => abcdef
[BLOB] abcdef => abcdef
[LONGBLOB] abcdef => abcdef
[TINYTEXT] abcdef => abcdef
[MEDIUMTEXT] abcdef => abcdef
[TEXT] abcdef => abcdef
[LONGTEXT] abcdef => abcdef
[ENUM('small', 'medium', 'large', 'xlarge')] large => large
[SET('one', 'two', 'three')] one,two => one,two

????? is cp1251 in utf8. Not an error.

[CHAR(10)] ????? => абвгд !!!
[VARCHAR(10)] ????? => абвгд !!!
[BINARY(10)] ????? => ?????
[VARBINARY(10)] ????? => ?????
[TINYBLOB] ????? => ?????
[MEDIUMBLOB] ????? => ?????
[BLOB] ????? => ?????
[LONGBLOB] ????? => ?????
[TINYTEXT] ????? => абвгд !!!
[MEDIUMTEXT] ????? => абвгд !!!
[TEXT] ????? => абвгд !!!
[LONGTEXT] ????? => абвгд !!!

CREATE TABLE `hsidemo3` (
 `pk` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `char` char(10) COLLATE utf8_unicode_ci NOT NULL,
 `binary` binary(10) NOT NULL,
 `varbinary` varbinary(10) NOT NULL,
 `varchar` varchar(10) COLLATE utf8_unicode_ci NOT
NULL,
 PRIMARY KEY (`pk`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT
CHARSET=utf8 COLLATE=utf8_unicode_ci;

P 89 test hsidemo3 PRIMARY
pk,char,binary,varbinary,varchar
0 1
89 + 1 4

You get garbled data

Constant non-empty default values work okay:

{screenshot}

{screenshot}

Protocol

Each line ends with \n (0x0A)

Each line consists of a set of tokens separated
by \t (0x09)

Requests and responses consist of single line

Token is either NULL or an encoded string

NULL is encoded as \0 (0x00)

Strings are encoded this way:

Empty string is zero-length token

Every byte in the range 0x00-0x0F is prefixed by 0x01
and shifted by 0x40. (E. g. 0x03 -> 0x01 0x43)

Other bytes are left unmodified

Example:
P<tab>\0<tab>(zero-length string)\n

Protocol is text-like, but binary, connection has
no charset

Error response

When you do something awkward you get error
response. They are similar for all the commands

{number > 1}\t1\t{text}\n

{number > 1}\t0\n

distinguish NULL from an empty string

A continuation of 0x09 0x09 means that there is an
empty string between them. A continuation of 0x09
0x0a means that there is an empty string at the end
of the line.

Commands

Authentication

Syntax

Params

Ok response

Fail response

Retrieve

Syntax

Params

LIMIT clause:

IN clause:

FILTER clause:

Empty result

Non-empty result is

Simple example

Command description — what can be done with it. You
don't need this if you have no password

Command description — what can be done with it.

Examples

Retrieve 1 row by exact id

Retrieve 3 rows starting from id 2

1-column index

2-column index

Retrieve all rows with warehouse = Virginia (1st
column in index used)

Retrieve row with warehouse = California & box =
A1 (1st & 2nd column in index used)

Retrieve all rows after warehouse = Seattle &
box = A1 if sorted by warehouse, box:

Get all rows with id IN (2, 4)

Retrieve all rows with warehouse = Virginia & box
IN (A1, B2):

IN

Filters

Get all rows with id > 2 & box != A1 & count < 6

Get all rows with id >=0 going down the index
until count > 1

Filter order has no effect.

Update/Delete

Syntax

Params

Command description — what can be done with it.

Small bug: Won't work until you specify limit.

Error response

MOD clause

Ok response

Error response

Examples

Update

Delete

set count = 5 where warehouse = Seattle

Get count where id=8 and set count=count+10
where id=8

Delete rows with id > 1 & count > 3

Create

Ok response for auto_increment:

Syntax

Command description — what can be done with it.

Ok response

Error response

Params

You should provide values for the columns you opened
with open_index.

Example

Bug: Always provide data for all columns you specified
with {columns list} param. (Will be discussed later)

Open index

Syntax

Params

To work with a table you need to get a special
descriptorCommand description — what can be done with it

Notes

You can re-open an index with the same {index id} and
possibly other {db name}/{table name}/{index name}.

You can open the same combination of {db name},
{table name}, {index name} multiple times, possibly
with different {columns list}.

You can't manually close indexes. Index is open until
the client connection is closed.

Open indices consume memory and make things work
slower. Try to use less than 1000 indices.

For efficiency, keep {index id} small as far as possible.

Ok response

Simple examples

one

two

Errors: locked table P 89 test hscwdemo2 PRIMARY
pk2 1 open_table

Configuration hints

For full list of HS config params see https://
github.com/ahiguti/HandlerSocket-Plugin-for-
MySQL/blob/master/docs-en/configuration-
options.en.txt

HandlerSocket configuration options

handlersocket_threads = 16
 Number of reader threads
 Recommended value is the number of logical CPU

handlersocket_thread_wr = 1
 Number of writer threads
 Recommended value is ... 1

handlersocket_port = 9998
 Listening port for reader requests

handlersocket_port_wr = 9999
 Listening port for writer requests

MySQL configuration options

innodb_buffer_pool_size
 As large as possible

innodb_log_file_size, innodb_log_files_in_group
 As large as possible

innodb_thread_concurrency = 0

open_files_limit = 65535
 Number of file descriptors mysqld can open
 HandlerSocket can handle up to 65000 concurrent
connections

innodb_adaptive_hash_index = 1
 Adaptive has index is fast, but consume memory

Options related to durability (use MySQL manual)

sync_binlog = 1

innodb_flush_log_at_trx_commit = 1

innodb_support_xa = 1

Use cases @ Badoo

Banned email lookup

One table (screenshot)

We replaced select * where name= '…' and
domain='…' with HS analogue

Dual-core Intel(R) Xeon(R) CPU E5503 @
2.00GHz

~52 millon rows

5 Gb

All data fits in memory

Persistent connects for HS are used

Writes go via SQL, <10 RPS

~1000 RPS for read via HS

~2 ms per read

Persistent session store

1 table, 16 m rows, ~23Gb

Get row by key, update row by key, insert row

Periodical purging via SQL (DELETE FROM sess
WHERE `ts` < ...)

12-core Intel(R) Xeon(R) CPU X5650 @
2.67GHz

All data fits in memory

Persistent connects for HS are used

Create: <10 RPS, ~1.2ms/request

Update: ~180 RPS, ~1.3ms/request

Get: ~3500 RPS, ~0.5 ms/request

Sharded persistent session store

10 000 tables

Sessions are spread by `hash` which is randomly
generated during session creation

10 million rows

~20 Gb

12-core Intel(R) Xeon(R) CPU X5650 @
2.67GHz

All data fits in memory

Same operations: get row by key, update row by key,
insert row

Create: <10 RPS, ~1.3ms/request

Update: ~150 RPS, ~1.3ms/request

Get: ~1200 RPS, ~1.6 ms/request

What was the benefit of sharding?

Sharded setups withstand write load better

Single-table setup worked well, but had low max write RPS

Sharding gave us 2x limit

Originally was slower. Moving from MySQL/InnoDB to
Percona Server/XtraDB gave us ~ 4x more
performance

Second problem: when table grows, performance drops

1 million actively changed rows/2 million table
and
2 million actively changed rows/20 million table
showed 10x performance difference

Clean obsolete rows daily

Try sharding and compare with single-table setup
for you application

60% CPU used, LA = 0.5

8% CPU used, LA = 5

3% CPU used, LA=10

Persistent cache

We cache users' interests list on 1 server per DC

Interests are stored in > 1000000 tables across 200
servers

Memcached has one problem — if it hangs/dies you
can't restart it with the same data set quickly

So we made our persistent cache for this

32 million rows shared across 10000 tables

14 Gb

12-core Intel(R) Xeon(R) CPU X5650 @
2.67GHz

11% CPU load, LA=5

Same operations: get row by key, update row by key,
insert row

Create: <10 RPS, ~0.4ms/request

Update: <10 RPS, ~0.4ms/request

Get: ~14500 RPS max, ~0.5 ms/request

Requests and responses have no unique id, so you
can't securely match requests and responses

Tuning

Try to shard by key with datasets > 10m rows,
usually it helps

User Percona Server/XtraDB

Use persistent connections

There is one problem

When working with web requests you can
unintentionally leave some unread data in the socket

and your process will start serving next request

and this next request will inherit this open socket with
some data

it will send request and get this data and treat is as a
response

so it will get an answer from previous query and this
will be 100% syntactically correct

There is no guaranteed way to avoid this when using
persistent connections

but we're using a simple approach that allows us to
sleep with no worry

instead of doing
retrieve value where key is 'abc'

we do
retrieve key, value where key is 'abc'

this can be easily done with HS

then we check we got that same key we were asking
for

This prevents us from reading other rows instead of
the row we need

Remember: open index consumes memory. You won't
be able to hold 1000 connections with 1000 open
indexes at the same time

I open the corresponding index then

if I get 2 1 stmtnum error from HS

I execute a query

I do it this way:

Lazy open_index technique

Recommendations

To lower the probability of problems

on socket read/write timeout

Alwayse reopen connection on syntax error

Always try to read all the data from socket

To work with any table you need to open index

with normal connections you need to do it every time
you open a new connection

in the world of websites this is usually connect,
open_index, do 2—3 other requests, close connection

with persistent connections you can open index very
rarely

So, when creating a socket in your program (e. g.
pfsockopen() in PHP)

If you don't need to open different indexes under the
same index number

check if index is already open and open it if it's not

What else you can play with

InnoDB ROW_FORMAT

InnoDB KEY_BLOCK_SIZE

Merging indexes If you need to work with several indexes in HS table,
try to merge them in one big multi-column index

HASH indexes

http://www.percona.com/doc/percona-server/5.5/
performance/handlersocket.htmlPercona's HS page

http://yoshinorimatsunobu.blogspot.ru/2010/10/using-
mysql-as-nosql-story-for.htmlHS introduction from authors

https://github.com/DeNADev/HandlerSocket-Plugin-for-
MySQL/tree/master/docs-enHS docs

https://github.com/DeNADev/HandlerSocket-Plugin-for-
MySQL/HS sources

https://github.com/DeNADev/HandlerSocket-Plugin-for-
MySQL/blob/master/READMEHS client libraries

Further reading

